skip to main content


Search for: All records

Creators/Authors contains: "Harrington, Kathleen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large- and small-aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimeter wavelengths. Inflationary science benefits from a deep delensing survey at arcminute resolutions capable of observing a large field of view at millimeter wavelengths. This kind of survey acts as a complement to a degree angular resolution survey. The delensing survey requires a nearly uniform distribution of cameras per frequency band across the focal plane. We present a large-throughput (9.4° field of view), large-aperture (5-m diameter) freeform three-mirror anastigmatic telescope and an array of 85 cameras for CMB observations at arcminute resolutions, which meets the needs of the delensing survey of CMB-S4. A detailed prescription of this three-mirror telescope and cameras is provided, with a series of numerical calculations that indicates expected optical performance and mechanical tolerance.

     
    more » « less
  2. Abstract

    Measurement of the largest angular scale (< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 << 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of125(130)μKarcmin. We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 << 125 with the first bin showingD< 0.023μKCMB2at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.

     
    more » « less
  3. Abstract

    The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016–2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90° from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 ± 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.

     
    more » « less
  4. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this measurement from the ground, CLASS utilizes a front-end, variable-delay polarization modulator on each telescope. Here we report on the improvements in stability afforded by front-end modulation using data across all four CLASS frequencies. Across one month of modulated linear polarization data in 2021, CLASS achieved median knee frequencies of 9.1, 29.1, 20.4, and 36.4 mHz for the 40, 90, 150, and 220 GHz observing bands. The knee frequencies are approximately an order of magnitude lower than achieved via CLASS pair-differencing orthogonal detector pairs without modulation. 
    more » « less
  5. We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments.

     
    more » « less
  6. Abstract

    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (∼10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers ∼67% (85%) ofEEandBB(VV) power at= 20 and ∼35% (47%) at= 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of110μKarcminand correlated noise component rising at low-as−2.4. The transfer-function-corrected low-component is comparable to the white noise at the angular knee frequencies of≈ 18 (linear polarization) and≈ 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Λ cold dark matterEEpower spectra. Bias fromE-to-Bleakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for anr= 0.01BBpower spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.

     
    more » « less
  7. Abstract The current and future cosmic microwave background (CMB) experiments fielding kilopixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current I and the applied bias current I b . The calibration method developed for the Cosmology Large Angular Scale Surveyor (CLASS) TES bolometer arrays relies on current versus voltage ( I – V ) measurements acquired daily prior to CMB observations. By binning Q -band (40 GHz) I – V measurements by optical loading, we find that the gain calibration median standard error within a bin is 0.3%. We test the accuracy of this I – V bin detector calibration method by using the Moon as a photometric standard. The ratio of measured Moon amplitudes between the detector pairs sharing the same feedhorn indicates a TES calibration error of 0.5%. We also find that, for the CLASS Q -band TES array, calibrating the response of individual detectors based solely on the applied TES bias current accurately corrects TES gain variations across time but introduces a bias in the TES calibration from data counts to power units. Since the TES current bias value is set and recorded before every observation, this calibration method can always be applied to the raw TES data and is not subject to I – V data quality or processing errors. 
    more » « less
  8. Guzman, Juan C. ; Ibsen, Jorge (Ed.)
  9. Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales (2≲ ℓ ≲ 200) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator as the first optical element in each of the CLASS telescopes. Here, we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first 2 yr of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the 1/ f noise and temperature-to-polarization ( T → P ) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a T → P leakage of <3.8 × 10 −4 (95% confidence) across the focal plane. We examine the sources of 1/ f noise present in the data and find the component of 1/ f due to atmospheric precipitable water vapor (PWV) has an amplitude of 203 ± 12 μ K RJ s for 1 mm of PWV when evaluated at 10 mHz; accounting for ∼17% of the 1/ f noise in the central pixels of the focal plane. The low levels of T → P leakage and 1/ f noise achieved through the use of a front-end polarization modulator are requirements for observing of the largest angular scales of the CMB polarization by the CLASS telescopes. 
    more » « less
  10. Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to65∘<#comment/>angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.

     
    more » « less